
 
 
 
 
 

idFS Design 
Documentation 

 
 
 
 
 
Version: 2.3 
Date: 19.03.2008 
Author: Johannes Meinecke 
 
 
 

Contents 
 
1 Architecture ......................................................................................................... 1 

2 Account Life Cycle ............................................................................................... 1 
3 Protocols ............................................................................................................. 2 

3.1 PRP Protocol ................................................................................................. 2 

3.2 Classes in PassiveRequestorProfile Namespace .......................................... 3 
3.3 ARP Protocol ................................................................................................. 4 

4 Identity Provider .................................................................................................. 5 

4.1 Identity Attributes ........................................................................................... 5 
4.2 Interface of the Identity Store Service ............................................................ 6 

5 Security Token Service........................................................................................ 7 

5.1 Tables at the Security Token Service ............................................................ 7 

5.2 Authorization Mechanisms at the STS........................................................... 8 
5.2.1 IP Allocation Rules .................................................................................. 8 
5.2.2 Authorization Rules ................................................................................. 8 

5.2.3 Role Ownerships ..................................................................................... 9 
5.2.4 Activation Codes ..................................................................................... 9 

6 Resource ........................................................................................................... 10 
6.1 Protection Mechanism for CRUDS Web Services ....................................... 10 
6.2 PRP Interface to the Resource .................................................................... 11 

7 Logging Events .................................................................................................. 11 





Project Kenya: idFS Design Documentation  1 

1 Architecture 
 

 

Figure 1: Implementation architecture 

 

2 Account Life Cycle 
 

 

Figure 2: Life cycle of a user account 

 



2  Project Kenya: idFS Design Documentation 

3 Protocols 
 

3.1 PRP Protocol 

 

 

Figure 3: Sequence diagram for the Passive Requestor Profile 



Project Kenya: idFS Design Documentation  3 

3.2 Classes in PassiveRequestorProfile Namespace 

 

 

Figure 4: Namespace WSLS.Federation.PassiveRequestorProfile.PassiveRequestorProfile 

 

 PRPModule: Base class for HTTP modules that handles PRP parameters, PRP 

configuration, authentication cookies etc. 

 IPModule: HTTP module for IPs. 

 STSModule: HTTP module for STS. 

 ResourceModule: HTTP module for resources. 

 SignInInfo: Represents session information about a user logged in at an IP. 

 Realm: Represents information about a security realm (of an application) a user 

is signed into. 

 Redirect: Auxiliary class for simple HTTP redirects with support for parameters 

and debug messages. 

 RSTRMessage: Represents a signed SOAP message for transporting security 

tokens. 

 PRPNamespace: Contains constants for the PRP namespace. 
 



4  Project Kenya: idFS Design Documentation 

3.3 ARP Protocol 

 

 

Figure 5: Sequence diagram for the Active Requestor Profile 

 



Project Kenya: idFS Design Documentation  5 

4 Identity Provider 
 

4.1 Identity Attributes 

 
Attribute Type Comment Meta auto token in Active Directory 

Identifier String  yes  yes objectguid 

LoginName String    yes samaccountname 

Password String     [password] 

LastLoginTime String     comment 

IsPending Boolean     comment 

IsActive Boolean     - 

ActivationID String pending users    comment 

RegistrationTime DateTime DC: Date yes   whencreated 

LastModified DateTime  yes   whenchanged 

Creator String =Identifier yes   comment 

IsModifiable Boolean   yes yes - 

IsUnused Boolean     comment 

AuthQuestion String     comment 

AuthAnswer String     comment 

NewEmailAddress String     comment 

NewEmailID String ID for confirmation    comment 

Salutation String "Herr", "Mrs.", ...    comment 

AcademicTitle String "Dr.", ...    personaltitle 

FirstName String    yes givenname 

LastName String    yes sn 

Title String display name yes yes  - 

Type String e.g. "Student,DA" yes   comment 

Language String  yes   preferredlanguage 

StreetAddress String     streetaddress 

City String     l 

PostalCode String     postalcode 

State String     st 

Country String e.g. "DE"    c 

JobPosition String     title 

Department String     department 

Company String     company 

TelPrivate String     homephone 

TelOffice String     telephonenumber 

TelMobile String     mobile 

Fax String     facsimiletelephonenumber 

EmailAddress String used for init. mail   yes mail 

EmailAdress2 String     othermailbox 

HomepageUrl String     wwwhomepage 

StudentNumber String Matrikelnummer    employeenumber 

StudentSubject String e.g. "Informatik"    employeetype 

Source String URL of IP yes yes yes - 

Figure 6: Attributes that define an identity 



6  Project Kenya: idFS Design Documentation 

4.2 Interface of the Identity Store Service 
// Returns the identity of the user with the supplied credentials or null. 

public WSLS.Adapters.GTS.ContentObject Authenticate(string loginName, 

string password) 

 

// Registers the specified identity and returns an identity object 

containing the activation id. 

public WSLS.Adapters.GTS.ContentObject 

Register(WSLS.Adapters.GTS.ContentObject identity) 

 

// Activates a pending object with the specified activation id. 

public bool Activate(string activationID) 

 

// Deletes old pending accounts, marks unused accounts (+returns them) and 

deactivates old unused accounts. 

public WSLS.Adapters.GTS.ContentObject[] CleanUp() 

 

// Updates an identity with the specified data. 

public void Modify(WSLS.Adapters.GTS.ContentObject identity) 

 

// Initiates a change of the email address and returns an ID that can be 

used to confirm the change. 

public string ChangeEmailAddress(string identifier, string newAddress) 

 

// Confirms a changed email address with the specified ID. Returns true, if 

successful. 

public bool ConfirmChangedEmail(string newEmailID) 

 

// Changes the password of an identity to the specified value. 

public void ChangePassword(string identifier, string password) 

 

//  Returns the identity of the user with the supplied soft credentials or 

null. 

public WSLS.Adapters.GTS.ContentObject AuthenticateWithQuestion(string 

loginName, string question, string answer) 

 

 



Project Kenya: idFS Design Documentation  7 

5 Security Token Service 
 

5.1 Tables at the Security Token Service 

 
Role 

Identifier key 

Name same as Title 

RoleId same as Identifier 

 
AutorizationRule 

Identifier key 

Condition string,i.e. "name='meinecke'" 

IPUrl normalized, can also be null 

RoleId id of role to be granted (Role.Identifier) 

Index priority value of the rule 

 
RoleOwnership 

Identifier key 

IdentityId 
can also be null for templates 
(Identity.Identifier) 

RoleId id of owned role (Role.Identifier) 

Date time of issuance 

ValidFrom   

ValidUntil   

ValidNr max. issue counter 

IssueCounter number of sign-ins 

TokenNr e.g. position on registration list 

TokenFrequency i.e. how often is the token owned 

Type e.g. “NumberedToken” 

 
ActivationCode 

Identifier key 

OwnershipId 
id of ownership template 
(RoleOwnership.Identifier) 

ValidFrom   

ValidUntil   

ValidNr max. issue counter 

IssueCounter   

Code to be entered 

Message displayed when issued 

 
IPAllocationRule 

Identifier key 

Condition string,i.e. "agent='ie'" 

IPUrl  url of Identity Provider 

Index priority value of the rule 

Figure 7: Tables / Data Web services at the Security Token Service 



8  Project Kenya: idFS Design Documentation 

5.2 Authorization Mechanisms at the STS 

The STS performs two main tasks: 

 to allocate the correct IP to the anonymous requestors 

 to calculate a set of roles to be issued to the requestor after he has been 
authenticated 

 
The role calculation can be seen as a black box: 

 input: a security token describing an identity 

 output: a set of roles (from the point of view of the application, one particular role 
can either be present once or not at all; any other information like e.g. the token 
frequency is not passed on during the authorization process) 

 

Figure 8: Basic authorization mechanism 

 

 The STS issues roles to identities via rules and via role ownerships, 

 Rules can be used when the identities are unknown in advance, e.g. in federated 
scenarios to issue roles to identities from foreign identity providers. 

 Role Ownerships can issue roles dynamically, e.g. time-restricted, frequency-
restricted, … 

 Activation codes define possible ways for the users to acquire role ownerships. 
 

5.2.1  IP Allocation Rules 

 the rules are applied in the order “sorted by index”. 

 rules at the top can be overwritten by rules at the bottom 

 the conditions are written in ADO.NET query syntax 

 the variables to be compared are taken from 

HttpContext.Current.Request.Params; they include HTTP header parameters 
as well as parameters form the URL query string 

 the first rule should be a default rule with the condition “true” 

 for further details cf. AllocationRules.doc 
 

5.2.2  Authorization Rules 

 the conditions are written in ADO.NET query syntax 



Project Kenya: idFS Design Documentation  9 

 the variables to be compared are taken the from set of attributes in the identity 
token 

 a particular role is only issued to a requestor once at most and does not have 
any other properties (as in the case of owned roles) 

 as a built-in rule, the AuthenticatedUser role is always issued 
 

5.2.3  Role Ownerships 

 a role can be owned in several different ways: 

 permanentRole: no restrictions 

 temporaryRole: only valid between validFrom and ValidUntil 

 nTimeRole: can only be issued ValidNr times by the STS (i.e. restricted 
number of logins) 

 numberedRole: the role ownership is characterized by a number 

 accumulatingRole: the role can be owned more than once 

 roles are only issued, if the ownership is currently valid 

 obsolete ownerships are not deleted automatically 

 a counter stores the number of logins, at which the role has been issued 

 the same role can be owned more then once in different modi 
 

5.2.4  Activation Codes 

 codes can be used to activate different types of role ownerships (see above) 

 entered codes must be known and currently valid (time limit, frequency limit) 

 obsolete codes are not deleted automatically 

 they can only be used once for a single identity 

 a counter stores the number of times the code has been issued 

 numberedRole-ownerships automatically receive ascending numbers 
 
 



10  Project Kenya: idFS Design Documentation 

6 Resource 
 

6.1 Protection Mechanism for CRUDS Web Services 

 

Figure 9: Authorization Mechanism for requests to CRUDS services 

 
  Create Read Update Delete Search 

SearchAndRead          X 

UpdateAsXml      X     

SupportedQueryTypes          X 

CreateAsXml  X         

Create  X         

Search          X 

ReadApplicationLog  X X X X X 

Delete        X   

ReadGTSIdentifiers    X       

ReadRSS           

ReadAsXml    X       

Update      X     

SearchAndReadXml          X 

GetServiceCard    X       

Read    X       

SupportedSearchColoumns          X 

Figure 10: Required permissions for accessing CRUDS web methods 



Project Kenya: idFS Design Documentation  11 

6.2 PRP Interface to the Resource 

There are 4 possible cases for the resource site, dependent on the value of 

((AccountInfo)(System.Web.HttpContext.Current.User)).PRPStatus: 

 anonymous: This can only happen if the configuration setting 

InterceptUnauthenticatedRequest has been set to false. The resource site can 
determine itself, whether the user should be redirected to the STS for 

authentication. The method ResourceModule.InitiateSignIn() can be used for 
that purpose. 

 signoutcleanup: This can only happen if the configuration setting 

InterceptSignOutCleanUp has been set to false. The resource site can take any 
necessary steps to sign out the user locally. Afterwards, 

ResourceModule.FinishSignOutCleanUp() should be called to redirect back to the 
IP. 

 authenticated: In this case the user has already been authenticated earlier. The 

resource site might have to consult a cookie of its own to identify the user. The 

method ResourceModule.InitiateSignOut() can be used to sign out the user at 
the IP. 

 signin: Directly after the user has signed in, the resource site is accessed for the 
first time. The generated identity contains the user data (only once). The resource 
site might want to generate a cookie of its own to remember the user. 

 

Figure 11: Interface to the resource 

 

7 Logging Events 
 101: user signed-in 

 102: failed authentication 

 103: new user registered 

 104: email sent 

 105: password set back 

 106: user details modified 

 107: email address modified 

 108: password changed 

 109: cronjob executed 

 110: registration re-submitted 


